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SUMMARY

Although the regularization increased the popularity of parameter identi)cation due to its capability
of deriving a stable solution, the signi)cant problem is that the solution depends upon the regulariza-
tion parameters chosen. This paper presents a technique for deriving solutions without the use of the
parameters and, further, an optimization method, which can work e=ciently for problems of concern.
Numerical examples show that the technique can e=ciently search for appropriate solutions. Copyright
? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

While forward computer analysis assists many industrial )elds )nding the result of actual
phenomena from its cause, inverse analysis plays an important role in )elds where the cause
is to be derived from its result [1]. Among inverse problems, a typical inverse problem in
industry is to identify the continuous parameter set of a continuous deterministic mathematical
model, given the corresponding set of measured data. Most often, the parameter identi)cation
problem is converted into an objective function consisting of the measured data and the whole
or partial model, and is solved by minimizing the function using an optimization method. In
accordance, various calculus-based optimization methods have been used, depending upon the
characteristics of the function ([2; 3] and references therein). The problem of this approach
is, however, that the solution often cannot be obtained if measurement data and=or the model
contain large errors [4] as this makes the objective function complex.

One of the approaches to overcome this problem is to add a regularization term [5], which
normally consists of a function multiplied with weighting factors such as a regularization
parameter, to the objective function. This term makes the functional smooth, so that a con-
ventional calculus-based optimization can obtain an appropriate parameter set in a more sta-
ble fashion. Nevertheless, the solution obtained depends upon the selection of the weighting
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220 T. FURUKAWA

factors, and most of the research reports leave the selection for further studies, showing results
only with a couple of selections [6; 7].

Techniques for )nding the best value of a weighting factor has been proposed only by
several researchers to the best of the author’s knowledge. Conventional techniques include
Morozov discrepancy principle [8], which obtains a regularization parameter based on mini-
mization of an error criterion, and the generalized cross validation [9], which is derived from
a statistical method. Later, Kitagawa [10; 11] proposed a technique based on the sensitivity
of the regularization term with respect to the regularization parameter. Reginska [12] consid-
ered the maximiser of the L-curve, de)ned by Hansen [13], as the optimal parameter. Kubo
et al. [14] also proposed a technique using singular value decomposition, while Zhuang and
Zhu [15] proposed a multi-time-step method for inverse problems involving systems consisting
of partial diKerential equations. The comparison of some of the techniques can be found in
References [16; 17]. Despite their good performance to some degree, the fundamental question
common in all the techniques is whether the automatic determination of a single solution by
computation is necessary, as the solution of the inverse problem will never be known in nature
unlike the forward analysis. In addition, an additional parameter must often be introduced to
)nd the best regularization parameter, the solution being again dependent on the additional
parameter.

Meanwhile, multi-objective optimization methods have been proposed for solving multi-
objective design optimization problems [18–21]. These methods allow the design parameters
to be optimized without weighting factors on design criteria such as weight and energy con-
sumption. The solution of this vector functional formulation is henceforth represented as a
space, namely the solution space, rather than a point, and the methods try to )nd a set of
admissible solutions in the solution space.

Due to the derivation of multiple solutions and the possible complexity of the objective
functions, the methods are mostly based on the evolutionary algorithms (EAs) [22], which
execute robust search from multiple search points for single objective optimization. Many
EAs are, however, very robust at the expense of e=ciency in contrast to the conventional
calculus-based methods, so that they are not ine=cient for parameter identi)cation problems of
concern, which has a relatively simple formulation; i.e. composed of a continuous deterministic
objective function with continuous search space. Moreover, since these algorithms )nd only
a )xed number of solutions in the solution space, the solutions are sparse and not well
distributed in the solution space.

In this paper, a technique for solving a regularized parameter identi)cation problem without
weighting factors is )rst proposed. In this technique, regularization terms are each formu-
lated as another objective function, and the multi-objective optimization problem is solved
by a multi-objective optimization method. Furthermore, a multi-objective optimization method
termed Multi-Objective Continuous Evolutionary Algorithm (MCEA) is proposed to )nd the
solutions for this class of problems e=ciently. The algorithm is also formulated such that its
solutions can describe the solution space to be derived.

Section 2 deals with the overview of the parameter identi)cation, and the proposed weight-
less regularized identi)cation technique is presented in Section 3. The proposed multi-objective
optimization method is described in Section 4, and Section 5 presents numerical examples in
order to investigate its superiority to the conventional techniques and its eKectiveness as a
parameter identi)cation technique. In the )rst three subsections of Section 5, the performance
of the proposed technique is tested with explicitly de)ned objective functions, and the last
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PARAMETER IDENTIFICATION WITH WEIGHTLESS REGULARIZATION 221

subsection deals with the parameter identi)cation of a viscoplastic material for practical use.
The )nal section summarizes conclusions.

2. PARAMETER IDENTIFICATION

2.1. Problem formulation

Suppose that we have a set of experimental data [u∗i ; v∗i ], where u∗i ∈U and v∗i ∈V; and the
corresponding model v̂ having parameters x∈X; the experimental data can be related to the
model by

v̂(u∗i ;x) + ei= v
∗
i (1)

where ei represents the sum of the model errors and measurement errors:

ei= emod
i + eexpi (2)

The parameter identi)cation is typically de)ned to identify the continuous vector in engineer-
ing problems X ⊆Rn, given a set of continuous experimental data, U;V ⊆Rn. In order to solve
it, a parameter identi)cation problem is often converted to the minimization of a continuous
functional:

f(x)→ min
x

(3)

where f :Rn→R. The parameter set minimizing such an objective function is to be found
within a search space:

xmin6x6xmax (4)

where [xmin;xmax]=X . In this formulation, the solution of the identi)cation problem is said
to exist if there is at least one minimum within range (4), and the solution is said to be
unique if there is only one minimum within the range.

As an example for functional (3), consider the popular method of least squares, the objective
function of which is often represented as

f(x)=
n∑
i=1

‖(v̂(u∗i ;x)− v∗i )‖2 (5)

It is clearly seen that the objective function consists of the model and the measurement data,
thus the shape of the objective function depending upon them. The di=culty of the parameter
identi)cation is therefore that the objective function can become complex if the model and
measured data contain considerable errors. It is more apparent when the number of measured
data is small.

On the other hand, the majority of optimization methods can consistently )nd a global
minimum only if the objective function is near-convex. Otherwise, the solution may diverge
or vibrate depending on the initial search point chosen a priori. The approach for overcoming
this problem is to introduce an additional term to the objective function in order to make it
near-convex. This gives rise to the regularization described in the next section.
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2.2. Regularization

The complexity of the objective function in other words means that even a small change of the
parameters may lead to a signi)cant change to the functional to be minimized, and stabilization
techniques are often termed as the regularization. In the Tikhonov regularization [23], which
is the most popular regularization technique, the objective function is transformed into

O(x)=f(x) + 
P(x)→ min
x

(6)

where 
 and P(x) are often termed as the Tikhonov regularization parameter and the Tikhonov
regularization function. Assume that the solution is known to be adjacent to x∗, the regular-
ization term may be given by

P(x)= ‖K(x − x∗)‖2 (7)

where K is a weighting matrix. Matrix K is most often set simply to the unity matrix unless
some information is available.

It is therefore clear that the solution relies on the selection of parameter 
, and the signif-
icant problem is that it is not easy to )nd the best parameter. In addition, if a conventional
optimization method is used to solve this problem, the introduction of the additional term may
still make the objective function non-convex, the solution resulting in vibration or divergence.
The next section will present a technique to overcome the problem.

3. WEIGHTLESS REGULARIZATION

3.1. Problem formulation

The only way for )nding solutions that do not depend upon the weighting factors is to remove
them from the formulation, and we hereby propose a multi-objective formulation. With the
unity weighting matrix of K, Tikhonov regularization parameter 
 is the only weighting factor,
and the objective of the problem is thus expressed as

f(x)T = [f(x); ‖x − x∗‖2] → min
x

(8)

where f(x)T : Rn → R2. If the weighting matrix is diagonal,

f(x)= [f(x); ‖x1 − x1∗‖2; : : : ; ‖xn − xn∗‖2] (9)

where f(x) :Rn → R1+n. The regularized parameter identi)cation formulated as a multi-
objective optimization problem is conclusively characterized as that:

• the problem is multi-objective,
• the objective function f(x) is continuous but can be complex such as non-convex,
• the search space is continuous.

The )rst important question is what can be the solutions of this multi-objective optimization
problem, and the next subsection will present the Pareto-optimality accordingly.
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Figure 1. Pareto-optimal set.

3.2. Problem solution

While the single-objective optimization tries to look for a single solution, multi-objective
optimization needs to derive a solution space, and this space is the natural solution to be
obtained for the weight-independent regularised parameter identi)cation formulated as a multi-
objective optimization problem. Any point in the space satis)es Pareto-optimality, which was
introduced in the )eld of economics a century ago, so the objective of the multi-objective
optimization problem is converted to )nding a set of Pareto-optimal solutions as equivalently
as possible to the solution space.

Consider a problem where we have m objective functions, fk :Rn → R; k=1; : : : ; m:

f(x)T = [f1(x); : : : ; fm(x)] → min
x

(10)

A decision vector xu ∈Rn is said to be Pareto-optimal if and only if there is no vector xv ∈Rn
for which v= f(xv)= (v1; : : : ; vn) dominates u= f(xu)= (u1; : : : ; un), i.e. there is no vector xv
such that

vi6ui; ∀i∈{1; : : : ; n} ∧ vi¡ui; ∃i∈{1; : : : ; n} (11)

Figure 1 illustrates an example where x8 and x12 satisfy Equation (11). The optimization
method to )nd well-distributed Pareto-optimal solutions in an e=cient and robust way will
be presented in Section 4, and the next subsection deals with how to select a )nal solution
from the Pareto-optimal set.

3.3. Determination of a solution

The great advantage of the proposed formulation is that we can select a single solution from
a set of Pareto-optimal solutions after optimization rather than optimise a single solution
with a speci)ed weighting factor. Figure 2 shows the proposed process of the selection of
a single solution from a parameter identi)cation problem where objective function f1 with
regularization term f2 is minimised to identify three parameters [x1; x2; x3]. First, the user
selects a Pareto-optimal solution in function space by considering the distribution of the
Pareto-optimal solutions and the importance of the regularization term to the problem or by
using a technique for )nding the best regularization parameters. Note that the user may use
a function space additionally de)ned to see other decision criteria such as the error and
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Figure 2. Process of deriving a single solution.

L-curve. The solution is then viewed in each two-dimensional parameter space to check
visually whether the solution meets the expectation of the user. If the solution is not the
expected one, the user selects a diKerent Pareto-optimal solution, and the same process is
repeated until the desired solution is obtained.

The number of graphs with three parameters is thus three and that with n parameters will
be 1

2n(n−1). If the number of parameters is considerably large, the visual decision making is
no longer possible, and the )nal solution must be selected automatically. The selection may
be achieved mathematically or by arti)cial intelligence techniques such as expert systems,
fuzzy logic or neural networks. We shall not discuss this further as it is out of scope of the
paper.

3.4. Parameter identi+cation process

Figure 3 shows the process of multi-objective optimization, while the process in case of the
single-objective optimization is shown in Figure 4 for comparison. It is clearly seen that the
optimization process in the single-objective optimization is within the loop and thus has to
be repeated with a diKerent set of weighting factors whereas the multi-objective optimization
requires only one execution. This means that multi-objective optimization is much superior
to the single-objective optimization in e=ciency, provided that one execution in terms of the
multi-objective optimization results in a similar Pareto-optimal set after a number of single-
objective optimizations each with diKerent weighting factors.

4. MULTI-OBJECTIVE OPTIMIZATION

4.1. Fundamentals

As a method to )nd a well-distributed Pareto-optimal set robustly and e=ciently,
MCEA proposed here is basically represented by the following four characteristics; the
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Figure 3. Deriving a solution in multi-objective
optimization.

Figure 4. Deriving a solution in single-objective
optimization.

method:

• searches with multiple points such that it can )nd multiple Pareto-optimal solutions,
• adopts probabilistic direct search algorithms based on evolutionary computation for robust-

ness,
• implements the continuous representation of the points, continuous search formulation and

continuous evaluation for e=ciency,
• stores all Pareto-optimal solutions historically generated to grasp the whole solution space.

Figure 5 shows the fundamental structure of the proposed method. First, a population of
individuals, each represented by a continuous vector, is initially (generation t=0) generated
at random, i.e.

P t = {x t1; : : : ;x t�}∈ (Rn)� (12)

where � represent the population size of parental individuals [24]. Each vector thus represents
a search point, which corresponds to the phenomenological representation of individual.

4.2. Reproduction

The de)nition of the recombination and mutation becomes the probabilistic distribution of the
phenomenological measures accordingly. In the recombination, parental individuals breed oK-
spring individuals by combining part of the information from the parental individuals, thereby
creating new points inheriting some information from the old points. The recombination
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Figure 5. Fundamental MCEAs. Figure 6. Ranking process of individuals.

operation is then de)ned as

x′
=(1− �)x
 + �x�

x′�=�x
 + (1− �)x�
(13)

where parameter � may be de)ned by the normal distribution with mean 0 and standard
deviation �:

�=N (0; �2) (14)

or simply a uniform distribution:

�=rand(�min; �max) (15)

The mutation can also be achieved simply by implementing

x′′ =rand(xmin;xmax) (16)

with a small possibility [25]. Note that the mutation may not be not necessary for parameter
� with normal distribution since it can allow individuals to alter largely with small possibility,
when the coe=cient � is large.

4.3. Evaluation, ranking and selection

As the Pareto-optimal set satisfying Equation (11) is to be found as solutions, the ranking
process of individuals is composed of an elimination rule. In the rule, the calculation of
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Figure 7. Ranks of individuals. Shadowed
areas represent search areas of the points in

group No. 3.

Figure 8. Evaluation of individuals. Shadowed
areas each represent search areas of the points

in group No. 3.

objective function at all the points f(xi); i=1; : : : ; n, is )rst conducted, and the Pareto-optimal
set is ranked No. 1. The points with rank No. 1 are then eliminated, and Pareto-optimal set in
the population is ranked No. 2. All the subsequent ranks are generated stepwise in the same
fashion until all the points are ranked [18]. The points in rank No. k; G(k), are de)ned as

G(k)= {xi | rank(xi)= k; ∀i∈{1; : : : ; n}} (17)

for further convenience, and the ranking process of the individuals is summarised in Figure 6.
The ranked points are illustrated in Figure 7.

Figure 8 illustrates the evaluation of the )tness of each individual. The evaluation process
starts with )nding the best and worst objective function value of each point:

fbest j = min{fj(xi) | ∀i∈{1; : : : ; n}} (18)

and

fworst j = max{fj(xi) | ∀i∈{1; : : : ; n}} (19)

If we temporarily de)ne the )tness as

S′
j(xi)=

fworst j − fj(xi)
fworst j − fbest j (20)

we can get the normalized conditions:

06S′
j(xi)61 (21)

and this allows us to treat the )tness of each function with the same scale. The )tness of
points with the same rank has to be the same, and the true )tness of each objective function
is thus de)ned as

Sj(xi)≡SG(k)
j (xi)= max{S′

j(xi) |xi ∈G(k)} (22)

the )tness of each individual can be conclusively calculated as

S(xi)=
m∑
j=1

Sj(xi) (23)
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which has the range

06S(xi)6m (24)

The selection operator favourably selects individuals of higher )tness to produce more often
than those of lower )tness. As S(xi)¿0 is satis)ed by this equation, the proportional selection
[18], which is reported to be faster in convergence than the other popular selection of the
ranking selection [26], can be directly used in the proposed algorithm. In this selection, the
reproduction probabilities of individuals are given by their relative )tness:

Ps(xi)=
S(xi)∑�
j=1 S(xj)

(25)

These evolutionary operations form one generation of the evolutionary process, which corre-
sponds to one iteration in the algorithm, and the iteration is repeated until a given terminal
criterion is satis)ed.

4.4. Historical storage of Pareto-optimal sets

So as to grasp the con)guration of the whole solution space, the resultant Pareto-optimal
solutions are stored outside the loop of the evolutionary operations. The whole Pareto-optimal
solutions obtained in the )rst generation are saved in this storage. From the second generation,
the newly created Pareto-optimal solutions in the loop are compared to the stored Pareto-
optimal solutions, and the new set of Pareto-optimal solutions is saved in the storage. This
strategy allows the Pareto-optimal solutions created in the past to be kept as solutions and
yield a good chance to increase the number of solutions, thus making the solution space easier
to see. The storage of the solution independent of the current population also may contribute
to the good distribution of the resultant solutions.

4.5. Comparison with other methods

The proposed method has been characterized by the multi-objective formulation, continuous
evolutionary search formulation and the historical storage for the robust and e=cient search
of well-distributed Pareto-optimal solutions. Some conclusions in the superiority of the pro-
posed method can be easily deduced from the past research, but numerical investigations are
necessary for the others.

In the search algorithms, two major EAs, genetic algorithms (GAs) [27] and evolution
strategies (ESs) [28], originally uses binary search with proportional=ranking selection and
continuous search with ranking selection, respectively. In the previous reports [29; 30], those
with the binary points and the ranking selection search more robustly than those with contin-
uous points and the proportional selection at the expense of fast convergence, and vice versa.
Continuous EAs (CEAs) proposed by the authors [23], incorporating continuous representation
of points and proportional selection, therefore demonstrated its convergence approximately 10
times faster than that of GAs and ESs [31]. MCEAs, taking over them from CEAs should
also be faster than the multi-objective versions of GAs and EAs without loss of generality,
and this shall not be further mentioned in the following numerical examples.

The evaluation of )tness for multi-objective optimization is a completely new approach
proposed in the paper. The ability of the approach to )nd appropriate Pareto-optimal solutions
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Table I. Parameters for MCEA.

Parameter Value

No. of generations 2500
Population 10
Mutation rate 0.02

thus needs to be demonstrated and will be presented in the next section. The eKectiveness of
historical storage in the increase of the number of solutions is very likely but not certain so
will also be investigated to make sure that the proposed method is better than all the other
multi-objective optimization method in performance.

5. NUMERICAL EXAMPLES

5.1. Regularized parameter identi+cation in two-dimensional parameter space

In order to con)rm its appropriateness for )nding Pareto-optimal solutions and the increase of
solutions over generations, MCEA was )rst used to identify two parameters by minimizing a
simple objective function where the exact set of solutions is known and can be seen visually
in two-dimensional space. In this example, let the function be given by the simplest quadratic
function:

f1(x)= ‖x‖2 =
n∑
i=1
x2i (26)

where n=2, the set of parameter x∈R2 is subject to inequality constraint (4) with xT
min

= [−5;−5] and xT
min = [5; 5]. The solution of the problem is clearly x∗T = [0; 0], but, to make

a regularized parameter identi)cation problem, we set that the solution is known to be adjacent
to [0:2; 0:4] thereby adding a Tikhonov regularization term as another objective function:

f2(x)= ‖x − z‖2 =
n∑
i=1

(xi − zi)2 (27)

where zT = [0:2; 0:4]∈R2. The problem therefore becomes to minimize functions (26) and
(27). The exact Pareto-optimal solution for this problem can be determined analytically and
is given by

X = {x |x= rz; r ∈ [0; 1]} (28)

and we can thus investigate the performance of the proposed technique with the exact solution.
Values of major parameters for MCEA used to solve the problem are listed in Table I.

Figures 9(a)–(c) show the computed Pareto-optimal set in f1−f2 space at 50th, 500th and
2500th generations, respectively, together with the exact solution. Figure 9(a) )rst implies that
the good approximate solutions have been already obtained after 50 generations. It is then
easily seen that computed solutions at larger generations are closer to the exact line, and this
indicates that the proposed method converges appropriately to the exact solution. In addition,
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Figure 9. Pareto-optimal solutions of Example I in function space: (a) 50 generations;
(b) 500 generations: (c) 2500 generations.

Figure 10. Pareto-optimal solutions with respect to generations in Example I: (a) 50 generations;
(b) 500 generations: (c) 2500 generations.

the number of computed solutions increases with respect to the number of generations as
shown in Figure 10, and this helps one to imagine the shape of the solution space.

Figures 11(a)–(c) show the corresponding Pareto-optimal solutions in x1–x2 space at 50,
500 and 2500 generations, respectively. The value of objective function f1 is the distance
of each computed solution from [0,0], and f2 from [0:2; 0:4]. The appropriateness of Pareto-
optimality of the computed solutions can be therefore con)rmed visually in Figure 11(a).
Moreover, one can easily see that the solutions are settling down to the exact solution with
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Figure 11. Pareto-optimal solutions of Example I in parameter space: (a) 50 generations;
(b) 500 generations: (c) 2500 generations.

the increase of the number of generations and get very close to the exact solution at 2500
generations in Figure 11(c).

The selection of a )nal single solution is trivial with this example and is not further
mentioned. However, we can obviously feel that the selection of a solution by seeing all
solutions in the function space (Figure 9(c)) and in the parameter (Figure 11(c)) is better
than the automatic derivation of a single solution with a dimensionless weighting factor.

5.2. Regularized parameter identi+cation within general parameter space

To see the capability of MCEA in general multi-dimensional parameter space, the second
example deals with )ve parameters (n=5) where the parameter space is constrained by
inequality (4) with xT

min = [−5;−5;−5;−5;−5] and xT
max = [5; 5; 5; 5; 5]. The objective function

and Tikhonov regularization term to be minimized are given by functions (26) and (27),
respectively, where zT = [0:3; 0:4; 0:5; 0:6; 0:7]∈R5, and the exact Pareto-optimal set is therefore
given by Equation (28). Again, parameters listed in Table I were used for MCEA.

Figure 12 shows the Pareto-optimal set computed in function space at 50, 500 and 2500th
generations. Also with this problem, the proposed method has appropriately found good ap-
proximate solutions, those at larger generations being closer to the exact curve with the
increase of its number over generations as shown in Figure 13. Figures 14(a) and 14(b) show
the resultant Pareto-optimal solutions at 50, 500 and 2500th generations in x1–x4 and x2–x4
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Figure 12. Pareto-optimal solutions of Example
II in function space.

Figure 13. Pareto-optimal solutions with respect
to generations.

Figure 14. Pareto-optimal solutions of Example II in parameter space: (a) x1–x4 space; (b) x2–x4 space.

space respectively. It can be seen that the solutions are not as close as those in the last
subsection, but they are clearly coming closer to the exact line.

In order to investigate the e=ciency of the proposed multi-objective formulation compared
to others, only objective function (26) was minimized with a single-objective optimization
method. MCEA can be used as a single-objective optimiser simply by implementing only one
function, so that MCEA was used for this optimisation. All the algorithms at the programming
level are therefore the same, and the direct comparison is hence possible. Note that the use
of MCEA for single-objective optimization results in the use of CEA.

Figure 15 shows the minimal value of objective function (26) of both the multi- and
single-objective optimizations. The )gure clearly indicates that there is only small diKerence
in performance between both the optimizations, and this tendency did not change even when
diKerent sets of initial populations were used. This may be caused by the fact that the same
individuals often occupy the population in single-objective optimization while multi-objective
optimization keeps variety over generations. In addition to )nding the best value of objec-
tive function (26) comparable to single-objective optimization, multi-objective optimization

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:219–238



PARAMETER IDENTIFICATION WITH WEIGHTLESS REGULARIZATION 233

Figure 15. Best objective function values in
multi- and single-optimization for Example II.

Figure 16. Pareto-optimal solutions of Example
III in function space.

searched other Pareto-optimal solutions with various states of Tikhonov regularization (67
solutions at 2500th generation) while the single-objective optimizer searched for one solution,
and we may conclude that the multi-objective optimization is superior to single-objective
optimization.

5.3. Regularized parameter identi+cation with a multimodal objective function

With the understanding of the appropriate performance of the proposed technique for iden-
ti)cation with a simple objective, the identi)cation with a complex function, which is more
realistic to engineering problems, has been investigated. In this Example III, the objective
function with )ve parameters has an additional term to Equation (26) and is given by

f1(x)= ‖x‖2 + 50−
5∑
i=1

10 cos(!xi) (29)

The cosine terms clearly makes the function multimodal with a number of local minima
and the function was used as a good example for a multimodal continuous function [32].
Again, Equation (27) was used as the Tikhonov regularization term, and Table I as MCEA
parameters.

Figure 16 shows the resultant Pareto-optimal solutions in function space at 50th, 500th
and 2500th generations. It is again seen that the distribution of the Pareto-optimal solutions
is becoming smoother as the number of generations increases. The coarse distribution of
solutions with small f1 is yielded by its complexity. The Pareto-optimal solutions at 50th,
500th and 2500th generations in parameter spaces x1–x4 and x2–x4 are shown in Figures 17(a)
and 17(b). In parameter space x1–x4, three groups of solution are seen at 50th generation.
After the number of groups is reduced to two at 500th generation, a new solution is found near
[0; 0] at 2500th generation. Meanwhile, three groups of solution are seen at 50th generation
in parameter space x2–x4 where one group consists of only one solution, and they result in
two of them at 2500th generation.
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Figure 17. Pareto-optimal solutions of Example III in parameter space: (a) x1–x4 space; (b) x2–x4 space.

Figure 18. Best objective function values in
multi- and single-optimization for Example III.

Figure 19. Pseudo-experimental data created with
Chaboche model.

While MCEA found 53 solutions, the searching capability of MCEA only for f1 was also
compared to that of CEA for single optimization in the same manner, and the result of the
comparison is shown in Figure 18. There is again little diKerence in performance between
both the optimizations.

5.4. Regularized parameter identi+cation of viscoplastic material models

Finally, the proposed technique was applied to a practical parameter identi)cation problem
of material models. In the mechanical tests of material, stress–strain data can be derived as
experimental data. Let stress and strain be represented by � and �, the problem in the robust
least squares formulation is given by

f1(x)=
∑
i
‖�̂(�∗i ; a)− �∗i ‖2 (30)
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Table II. Parameters for Chaboche model.

Parameters R0 K n H D h d

Exact values 50 50 3 5000 300 100 0.6
Known values 40 50 2.5 4500 300 100 0.6

where [�∗i ; �
∗
i ] are a set of experimental stress–strain data and �= �̂(�; a) is a material model

having a as material parameters. Measurement errors in the mechanical tests are relatively
small, but the di=culty of solving this problem is created by the complex description of
material model.

The material model used in the numerical example is Chaboche model, which is popularly
used because of its capability for accurate description of the major material behaviours of
viscosity and cyclic plasticity. The model under stationary temperature and uniaxial load
conditions is of the form

�̇vp =
〈 |� − %| − R

K

〉n
sgn(� − %) (31a)

%̇=H�̇vp −D%|�̇vp| (31b)

Ṙ= h|�̇vp| − dR|�̇vp| (31c)

where state variables [�vp; %; R] are the viscoplastic strain, kinematic hardening and isotropic
hardening, [K; n;H;D; h; d] are inelastic material parameters, and 〈:〉 is McCauley bracket. The
stress–strain relationship cannot be explicitly written as described in Equation (30), but, given
strain � as a control input and the initial condition of state variables [�vp|t=0; %|t=0; R|t=0]=
[�vp0 ; %0; R0], the viscoplastic stress with respect to time can be derived iteratively, and stress
can be ultimately calculated using

�=E(�− �vp) (32)

where E is the elastic modulus. In the model, parameters often unknown are inelastic material
parameters [K; n;H;D; h; d] plus the initial condition of isotropic hardening variable R0, the
parameters to be identi)ed resultantly becoming x=[R0; K; n; H;D; h; d].

To facilitate the analysis of identi)cation, the numerical example uses only pseudo-experi
mental data of cyclic plasticity shown in Figure 19, created from Chaboche model with a
set of parameters described in Table II as ‘exact values’, so we will identify only parameters
which inWuence cyclic plasticity; i.e., x=[R0; K; n], setting the assumption that the others
are exactly known. Material models are modelled by considering what kind of meaning the
parameters included have, and therefore we often know roughly what values the parameters
should take. We take values also in the table as ‘known values’ for parameters [R0; K; n].
This gives Tikhonov regularization term expressed by Equation (27) as the second objective
function f2. The parameters used for optimisation were again those in Table I.

Figure 20 depicts the Pareto-optimal solutions in function space obtained from the parameter
identi)cation after 2500 generations. A total of 487 solutions are obtained, and it is easily

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:219–238



236 T. FURUKAWA

Figure 20. Best objective function values for parameter identi)cation.

Figure 21. Pareto-optimal solutions of Example III in parameter space:
(a) R0–n space; (b) n–H space; (c) H–R0 space.

seen in the )gure that the solutions are well distributed. Respectively shown in Figures 21(a),
21(b) and 21(c) are the solutions in R0 − n, n − H and H − R0 parameter spaces. All the
)gures show that the solutions are distributed along the straight line linking the ‘exact values’
and ‘known values’. This result indicates that the proposed technique could )nd appropriate
Pareto-optimal solutions for this problem.
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6. CONCLUSIONS

A weightless regularized identi)cation technique and, further a multi-objective optimization
method of MCEA, which can search solutions e=ciently for this class of problems, have been
proposed. The use of multi-objective method allows the whole solution set of the problem
rather than a single solution to be derived by one optimization. The user can therefore select a
single solution later by investigating the whole solution set in function and parameter spaces.

After the Pareto-optimality of solutions derived by MCEA was con)rmed with a simple
example visually, the proposed technique was applied to identi)cation problems including
material parameter identi)cation, and the technique could )nd appropriate solutions in all the
problems. The searching capability of the technique was also compared to that of a single-
objective optimization method, and its superiority has been demonstrated. Conclusively, the
overall eKectiveness of the proposed technique for parameter identi)cation has been con)rmed.

Importance for selecting a single solution from Pareto-optimal solutions has been discussed
in the paper but not its process. Developing a process is another big step, and the author is
currently working on it as the advantage of the multi-objective approach has been con)rmed
in this paper. Several projects are in fact going on to )nd such a process [33].

Another important further study is the application of the technique to actual engineering
problems. The author is also currently implementing the technique to the parameter identi-
)cation of inelastic material models [31; 34]. The models contain 5–30 parameters, and its
determination is above the human ability. The result of the identi)cation will be reported in
further papers.
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